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Abstract
Pre-trained large language models (LLMs) have gained significant attention in the field of natural language processing (NLP),
especially for the task of text summarization, generation, and question answering. The success of LMs can be attributed to
the attention mechanism introduced in Transformer models, which have outperformed traditional recurrent neural network
models (e.g., LSTM) in modeling sequential data. In this paper, we leverage pre-trained causal language models for the
downstream task of failure analysis triplet generation (FATG), which involves generating a sequence of failure analysis
decision steps for identifying failure root causes in the semiconductor industry. In particular, we conduct extensive comparative
analysis of various transformer models for the FATG task and find that the BERT-GPT-2 Transformer (Big GCVAE), fine-
tuned on a proposed Generalized-Controllable Variational AutoEncoder loss (GCVAE), exhibits superior performance in
generating informative latent space by promoting disentanglement of latent factors. Specifically, we observe that fine-tuning
the Transformer style BERT-GPT2 on the GCVAE loss yields optimal representation by reducing the trade-off between
reconstruction loss and KL-divergence, promoting meaningful, diverse and coherent FATs similar to expert expectations.

Keywords Failure root cause analysis · Large language model · Decision-making · Generalized latent space modelling

Introduction

Failure Analysis Triplet Generation (FATG) is a scientific
process that aims to generate a sequence of failure anal-
ysis texts for a given failure description. We approach
FATG as a data-to-text generation task, where the input is
a Failure Description Report (FDR) represented as struc-
tured tabular data, and the output is a lengthy sequence
of failure analysis triplets. Data-to-text generation is the
automatic generation of natural language reports from non-
contextual, non-linguistic inputs (Gatt & Krahmer, 2018).
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Early approaches employed knowledge-based expert sys-
tems (Kukich, 1983) to generate natural language reports
from computer databases. In recent times however, there has
been a notable rise in the use of end-to-end auto-encoding
architectures (Bahdanau et al., 2015) for the purpose of data-
to-text generation (natural language inference). These archi-
tectures involve training encoder-decoder frameworkswithin
the framework of deep learning-based sequence-to-sequence
(Seq2Seq) models. Two prominent types of Seq2Seq mod-
els, namely Long-Short-Term Memory (LSTM) (Liu et al.,
2016; McCann et al., 2017; Ramachandran et al., 2016) and
Transformers (Vaswani et al., 2017), have garnered signif-
icant attention in the field of natural language generation
(NLG).

The LSTM-based Seq2Seq models have proven to be
effective in capturing the dependencies and contextual infor-
mation present in sequential data, making them well-suited
for NLG tasks. By employing an encoder-decoder architec-
ture, the LSTM models are capable of encoding the input
data and generating coherent and contextually relevant text
as output. Transformers, on the other hand, are a type of neu-
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Fig. 1 Symbolic representation of FATG decision-making process

ral network architecture that emerge as powerful alternatives
to LSTMmodels for sequence modeling tasks. Transformers
use a self-attention mechanism, which allows them to cap-
ture global dependencies in the input sequence. This makes
Transformers particularly suitable for natural language gen-
eration (NLG) tasks, which require a broader context and can
benefit from capturing complex relationships between words
or entities. In the context of failure analysis triplet gener-
ation (FATG), the attention mechanism in Transformers is
employed to generate long-sequenced, non-contextual natu-
ral language decisions made by experts during failure root
cause analysis. This means that we can use Transformers to
generate textual response for analyzing failed components,
even if the input data is not in a contextual format.

The adoption of end-to-end auto-encoding architectures,
coupled with the training of encoder-decoder frameworks
employing LSTM or Transformer-based Seq2Seq models,
has significantly advanced the domain of data-to-text gen-
eration. These methodologies have showcased remarkable
effectiveness in a numerous of Natural Language Generation
(NLG) tasks, thereby fostering progress in machine transla-
tion, text summarization, question answering, and natural
language inference.

The framework introduced in this paper for variational
auto-encoder fine-tuning methodology includes the follow-
ing aspects:

• Robust fine-tuning of a coupled BERT-encoder and GPT-
decoder: This approach involves leveraging the Gener-
alized Controllable Variational AutoEncoder (GCVAE)
loss with adaptive hyperparameters. These adaptive
hyperparameters are instrumental in balancing the trade-
off between the quality of text reconstruction and the
disentanglement of latent factors in the representation
space, leading to structured human-like understanding
and generation (See Table 3). We also benefit from max-

imizing the informativeness of the latent space when
finetuning using the GCVAE loss for the domain task
of failure analysis generation.

• Maximizing efficiency of GCVAE loss for optimal latent
space representation: To optimize the latent space rep-
resentation, this methodology deliberately avoids the
conventional practice of masking the BERT encoder.
Instead, it permits the unimpeded flow of information
through the bottleneck. During this process, the primary
focus is placed on evaluating the mutual information dur-
ing both inference and reconstruction when optimizing
of this loss function.

The remaining section of the paper follows with related
works in “Related work” section, failure reporting and cor-
rective action system in “Failure reporting and corrective
action system: FRACAS” section, Pretrained Large Lan-
guageModels, in “Pretrained large language model” section,
Extensive experimentation with quantitative and qualita-
tive analysis in “Experimentation” section with conclusion
and limitations in “Conclusion” and “Limitation” sections
respectively.

Related work

NLP in manufacturing. NLP plays a vital role in improv-
ing quality control processes in the manufacturing industry.
By analyzing textual data from various sources, such as cus-
tomer feedback, sensor logs, and maintenance reports, NLP
algorithms can identify patterns and anomalies related to
product defects. This enables manufacturers to detect and
address quality issues promptly, thereby enhancing product
reliability and customer satisfaction. Notable research in this
domain includeworks byBiffl andHalling (2003), Loniewski
et al. (2010), Binkhonain and Zhao (2019) show remark-
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able progress of NLP for defect detection. By leveraging
sentiment analysis and topic modeling, manufacturers can
gain real-time visibility into market trends, customer pref-
erences, and demand patterns (Biswas et al., 2022; Garg et
al., 2021; Pournader et al., 2021; Toorajipour et al., 2021)
for Supply Chain Management and Demand Forecasting.
This paper, along with previous publications by Ezukwoke
et al. (2021), Wang et al. (2022), Rammal et al. (2023a),
represents pioneering efforts in exploring the application
of Natural Language Processing (NLP) and machine/deep
learning techniques for the identification of failure root cause
analysis in semiconductor industry.

Intelligent decision-making necessitates the intelligent
representation of historical expert decisions, particularly in
cases where a single type of failure can have multiple fail-
ure analysis approaches. Hence, to design intelligent systems
capable of handling such scenarios, it is essential to extract
meaningful information from failure reporting systems. This
extraction process enables the creation of intelligent sys-
tems that can effectively interpret and utilize the knowledge
derived from historical expert decisions, leading to improved
decision-making capabilities in failure analysis. Given the
huge amount of textual data obtained from the FA final report
therefore, NLP as a subdomain of artificial intelligence is
used to structure and find decision patterns in such data.
Notable works by Zimmer et al. (2019) used NLP techniques
to find pattern of decisionsmade by expert during RAMP-UP
production. Yue et al. (2018) used CNN-LSTM for industrial
fault diagnosis and prognosis.
Representation learningand languagemodelingToaddre-
ss the challenge of representation of unstructured text
obtained from industrial data, it is crucial to explore tech-
niques that can reduce the dimensionality of the vector space,
resulting from numerization, while preserving the contex-
tual meaning of the text. AutoEncoders (Chen & Zaki, 2017;
Oshri, 2015) and Variational Autoencoders (Dirichlet ver-
sion) (Xiao et al., 2018) have been widely employed for
this purpose. Recent studies have shown that Convolutional
Neural Networks based on Variational Autoencoders (Liu
et al., 2020) outperform other methods in terms of preserv-
ing semantic meaning in large-scale text data. Ezukwoke et
al. (2021) used β-Variational AutoEncoder while Rammal
et al. (2023b) used Variational AutoEncoders together with
genetic algorithm to find a well disentangled optimal repre-
sentation space for failure analysis dataset where clusters of
decisions can be found using K-means or Gaussian mixture
model. This is attributed to their ability of VAEs to extract
semantic representations from textual data.

The challenge with using Variational AutoEncoder for
modeling complexdata is the problemof vanishingKullback-
Leibler (KL) divergence (Bowman et al., 2016), where the
unit Gaussian prior of the encoder matches the posterior.
This results in a non-informative latent z, due to lack of

disentanglement (that is, collapsing different factors of vari-
ation into a small region of the latent space). Attempts
to address the vanishing KL problem includes using KL
annealing schemes (Bowman et al., 2016; Fu et al., 2019a;
Higgins et al., 2017), importance weighted autoencoders
(Burda et al., 2016), conditional variational autoencoder
(Zhao et al., 2017), controllable variational autoencoder
(Shao et al., 2020) and generalized controllable variational
autoencoder (Ezukwoke et al., 2022a). Transformer-based
Variational Autoencoders (Liu & Liu, 2019) have demon-
strated improved sentence generation with more meaningful
content and coherent semantics in the latent space. Fur-
ther research reveal that by pretraining Transformers with
a BERT-encoder and a GPT2-decoder on variational loss (Li
et al., 2020), the inherent solution to the vanishing KL issue
was achieved, leading to the state-of-the-art performance in
inference tasks.

Our paper is the first to consider fine-tuning a pre-
trained Transformer (BERT-encoder and a GPT2-decoder)
on a robust generalized controllable variational autoencoder
(GCVAE) loss Ezukwoke et al. (2022a) and also applying
it to the semiconductor manufacturing industry for deci-
sion inference for failure root cause analysis. The results
(in “Qualitative evaluation: Big GCVAE” and “Qualitative
evaluation: Big GCVAE” sections) suggests that the GCVAE
loss supports disentanglement and is capable of reducing the
trade-off between the reconstruction and regularization, lead-
ing to more informative latent space.

Failure reporting and corrective action
system: FRACAS

FRACAS stands for “Failure Reporting, Analysis, and Cor-
rective Action System.” It is a systematic approach used in
industries, particularly in engineering and manufacturing, to
manage the identification, analysis, and resolution of failures
or defects in products, systems, or processes. The FRACAS
process involves the collection of failure data, analysis of the
root causes of failures, and the implementation of corrective
actions to prevent recurrence.

At the core of FRACAS is its database management sys-
tem (DBMS), designed to categorize failure modes into
critical categories, enabling the identification of product life
cycle processes that require significant attention for enhanc-
ing reliability (Mario, 1992). Reports generated from the
FRACASDBMSprovide valuable insights into failure types,
origins of detection, and a series of analyses represented as
triplets, consisting of step type, substep technique, and equip-
ment, proposed to identify the root cause of failures. These
reports also present conclusions drawn from the failure anal-
ysis.
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Fig. 2 Percentage distribution of Step types

Fig. 3 Percentage distribution of Substep tehniques

Throughout the subsequent sections of this paper, the term
pre-triplet will refer to failure descriptions, while triplets
(Step type; Substep technique; Equipment) will denote the
collection of analyses, each comprising three key compo-
nents. Each triplet contributes to a failure decision, and the
main objective of this paper is to generate a set of n triplets
that correspond to a specific failure description.

FRACAS variables

We describe the three important variables (the triplets) for
decision-making as follows:

• Step type:The initial stage of fault analysis entails deter-
mining the fault analysis step type, which represents
the first analysis proposed by the expert once the sam-
ple is validated for analysis. At STMicroelectronics,
the fault analysis process is predominantly composed
of Non-destructive Inspection, Electrical Failure Verifi-
cation, Sample Preparation, Physical Analysis, Global
Fault Localization, and other step types, collectively
accounting for 94.3% of all conducted fault analyses.
There is often a correlation between the requested activity
and the specific analysis conducted. The expertise of an
expert plays a crucial role in comprehending the rationale
behind a specific request and selecting the appropriate
path to identify the origin of the defects.
The Fig. 2 shows the percentage distribution of Step type
taken during failure analysis between 2019-2021.

Fig. 4 Percentage distribution of Equipment

• Substep technique: In the context of fault analysis, each
step type is accompanied by a corresponding substep
technique. A comprehensive set of 91 distinct sub-
step techniques is employed for sub-analysis purposes.
Among these techniques, certain substep techniques are
frequently associated with specific step types. Notably,
package decap, optical microscopy, SAM (Scanning
Acoustic Microscopy), X-ray, SEM (Scanning Electron
Microscopy), die delaying, FIB (Focused Ion Beam)
cross-section, continuity test, electrical parametric test,
and mechanical cross-section are the most commonly
used substep techniques.
To visualize the distribution of the various substep tech-
niques in the dataset, a pie chart is presented in Fig. 3.
This chart offers valuable insights into the relative fre-
quencyof each substep techniquewithin the fault analysis
dataset.

• Equipment: Equipment are the tools used for fail-
ure analysis. The equipment are 1348 equipment types
found in the data set. OM113-LEICA M165C, PK103-
PHOENIX X-RAY NANOMEX, ZZ003 - CRI7, ZZ003
- CRI6,MICROSCOPE LEICADM2700M, SAM, AGR
XRAY01, AGR MICROXCT 200 X-RADIA 3D, AGR
STEREOSCOPIC MICROSCOPE M8-FA,
AGRXPREP01,AGRDUALBEAMHELIOS400,AGR
PARALLEL LAPPER 3-FA are the top ten equipments
frequently used for analysis (See Fig. 4).

Formalization

In the context of FATG, we propose a general symbolic rep-
resentation for the decision-making process (See Fig. 1). In
subsequent sections, we explore language models, specifi-
cally pre-trained language models based on the Transformer
architecture, for FATG. To assess the performance of dif-
ferent models, we employ widely used scoring metrics such
as BLEU, ROUGE, and METEOR. We initially formalize
our problem within a probabilistic graphical framework and
subsequently extend it to language modeling.
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Given failure analysis description (FDR) {xi }Ni=1 ∈ R
D ,

where N is the number of observation and D is the dimension
of the preprocessed data, and a set of failure analysis triplets
{λi }Ni=1 ∈ R

M , where M is the dimension of λ. We express
the FATG as data-to-text problem by defining the input space
as a joint space of x and λ. Let us begin by modeling them
individually, the FDR (input space) probabilitymass function
is,

px (x) =
N∏

i=1

px (xi |x1:i−1) (1)

and the failure analysis triplets (FAT),

pλ(λ) =
N∏

i=1

pλ(λi |λ1:i−1) (2)

The joint probability space is given as,

px,λ(x, λ) =
N∏

i=1

px,λ(xi , λi |x1:i−1, λ1:i−1) (3)

Compact representationWe present a compact representa-
tion for Eq. (3) as follows. Let us represent the joint space
between failure description x ∈ R

D and failure analysis
triplets λ ∈ R

M i.e. {xi , λi }Ni=1 ∈ R
K as � ∈ R

K , where
K = D+M is the dimension of the joint space- a sum of the
dimensions of x and λ respectively. We define the compact
joint probability space between x and λ as,

p(�) =
N∏

i=1

p(�i |�1:i−1) (4)

This compact joint space can be modeled into a likelihood
function,

∑N
i=1 log p(�i |�1:i−1;φ) and its parameter, φ

estimated using a deep neural network.

Pretrained large languagemodel

Generative pre-trained transformer

Generative Pre-trained Transformer model (GPT) (Radford
& Narasimhan, 2018) is a type of transformer model that
uses a multi-layer Transformer decoder (Liu et al., 2018)
instead of the encoder-decoder model introduced byVaswani
et al. (2017). GPT is known for its ability to generate
coherent and contextually relevant text including human-like
responses, sentences completion, and evenwriting entire arti-
cles. By leveraging its pre-trained knowledge and fine-tuning
on domain specific FA task, GPT is capable of understand-
ing the semantic and syntactic structures of failure analysis

description and triplets, making it suitable for failure triplet
generation.

The model structure begins with training in an unsuper-
vised setting corpus of tokens, U = {u1, . . . , un} with a
standard likelihood objective to maximize:

L1(U) =
∑

i

logP(ui |ui−k, . . . , ui−1;�) (5)

Where k is the context window and � is the neural network
parameters obtained when modeling conditional probability
P. This model applies a multi-headed self-attention operation
over the input context tokens followed by position-wise feed-
forward layers to produce an output distribution over target
tokens as follows:

h0 = UWe + Wp (6)

hi = transformer_block(hi−1) ∀i ∈ [1, n] (7)

P(u) = softmax(hnW
T
e ) (8)

Where U = (u−k, . . . , u−1) is the context vector of tokens,
n here is the number of layers whileWe andWp are the token
embedding and position embedding matrix respectively.

Bidirectional encoder representations from
transformers

Bidirectional Encoder Representations fromTransformers or
BERT, is a natural language processing (NLP) model devel-
oped to comprehensively understand the context of words
in a sentence by processing language bidirectionally, captur-
ing both left and right context. This bidirectional approach
significantly enhances its grasp of semantics and meaning.
BERT is pretrained on vast amounts of text data, allow-
ing it to learn intricate language patterns and nuances. It
uses the transformer architecture, known for its efficacy in
modeling sequential data, and employs self-attentionmecha-
nisms to capture long-range dependencies. After pretraining,
BERT can be fine-tuned for specific NLP tasks, achieving
state-of-the-art results in applications such as text classifi-
cation, question-answering, and sentiment analysis. During
BERT’s pretraining phase, it employs two main objectives:
the Masked Language Model (MLM) and Next Sentence
Prediction (NSP). In the MLM objective, a fraction of input
tokens is randomly masked, and BERT learns to predict the
original tokens in their context, using cross-entropy loss. The
loss function for the MLM objective is the sum of cross-
entropy losses for all the masked tokens in a training sample
and is expressed as follows:

LMLM = −
∑

i

qi logpi (9)
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Fig. 5 An illustration of theBigGCVAEarchitecture.On the leftmost is
the unmasked BERT weights loaded to the Encoder and GPT-2 weights
loaded to the Decoder

Where p is the predicted probability distribution over the
vocabulary for the i-th masked token, and q is the encoding
of the true token for the i-th masked token. It is important
to note that during training, BERT typically masks only a
fraction of the tokens in each input, so the sum is taken over
the masked tokens. The NSP objective helps BERT under-
stand sentence relationships by predicting whether a second
sentence follows the first. These two objectives grant BERT
a broad range of language comprehension skills. After pre-
training on a large text corpus, BERT is fine-tuned for specific
NLP tasks using task-specific loss functions, customized to
meet each task’s requirements. The loss function for the NSP
objective is:

LNSP = −(qlogp) − (1 − q)log(1 − p) (10)

Here p and q are the predicted probability of the next
token and true label respectively.These two objectives, the
MLM and NSP objectives, collectively provide BERT with
a diverse set of language understanding capabilities during
pretraining.

Big GCVAE

Leveraging our previous understanding of variational autoen-
coder for learning high-quality latent representations and
optimal reconstruction of objects including text and images,
we propose an improved variational Large Language Model
accordingly. This model, Big GCVAE, is adopted for the
FATG task by tying together two different transformers archi-
tectures (Encoder and Decoder-only) and fine-tuning them
using GCVAE loss function (the implementation code is
available on GitHub.1) The model is structured like a clas-
sic Transformer model but loaded with pretrained weights.
The Encoder is an unmasked BERTmodel while the decoder
is a GPT-2 (for example, GPT-2 base, small or large) and
fine-tuned on a loss function with adaptive hyperparameters
(see Figure 5). The proposed model consists of two essential
components: a generation module and an inference module,

1 https://github.com/FA4-0/Big-GCVAE.

which facilitate a bidirectional mapping between the smooth
continuous latent and the symbolic space, following Li et al.
(2020). The generation module allows for the generation of
samples from the latent space, enabling the synthesis of new
instances in the symbolic domain. Conversely, the inference
module enables the mapping of symbolic inputs to their cor-
responding latent representations, facilitating the extraction
of meaningful latent features.
Inference is performed on the encoder section similar to the
work of Li et al. (2020), except, rather than using the classical
Evidence Lower Bound, we maximize instead the mutual
information between the data x and latent z, Iq(z, x) through
a bottleneck, which yields a new evidence lower bound:

L(θ, φ, α, β, γ ) =(1 − αt − βt ) E
z∼qφ(z|x)[ln pθ (x |z)]

− βt E
pD

DKL(qφ(z|x)||pθ (z))

+ γt DK L(qφ(z)||pθ (z)) (11)

We derive this lower bound in the next subsection.

Notations and definitions

Given a d-dimensional input space {xi }Ni=1 ∈ X consist-
ing of N-independently and identically distributed (i.i.d)
samples; k-dimensional latent space {zi }Ni=1 ∈ Z (where
k � d) over which a generative model is defined. We
assume an empirical prior distribution pθ (z) ∼ N (0, I )
to infer an approximate posterior distribution qφ(z|x) ∼
N (z|μφ(x), σ 2

φ (x)I ), withmeanμφ(x) and variance σ 2
φ (x)I

used for re-parameterization sampling of the latent space z
(Kingma & Welling, 2014). We model the data using con-
ditional distribution pθ (x |z) ∼ N (x |μθ(x), σ 2

θ (x)I ). Let us
suppose that the underlying distribution of the input space
p(x) follows a normal distribution, and its empirical dis-
tribution is denoted by pD(x). Ip(x ′, z) is the joint mutual
information space between x ′ and z generated from the pos-
terior pθ (x |z) after obtaining an inference posterior qφ(z|x).
The optimization framework proposed in Ezukwoke et al.
(2022a) is given as follows:

max
θ,φ,ξ+,ξ−,ξp∈R

Ip(x
′, z)

s.t E
pD

DKL(qφ(z|x) ‖ pθ (z)) + Ip(x
′, z) ≤ ξ−

s.t − E
pD

DKL(qφ(z)||pθ (z)) ≤ ξ+

s.t Ip(x
′, z) ≤ ξp

s.t ξ+
i , ξ−

i , ξi p ≥ 0, ∀i = 1, . . . , n (12)

The expansion of the above equations using sets of
Lagrangian multipliers is as follows,
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L(θ, φ, ξ+, ξ−, ξ p, α, β, γ, η, τ , ν)

= Ip(x
′, z) − β( E

pD
DKL(qφ(z|x)||pθ (z))

+ Ip(x
′, z) − ξ+) + γ ( E

pD
DKL(qφ(z)||pθ (z)) + ξ−)

− α(I (x ′; z) − ξp) − ηξ+ − τξ− − νξp (13)

The negative Lagrangian multipliers pose no challenge since
they only exist to eliminate the error terms ξ+, ξ−, ξp,

L(θ, φ, ξ+, ξ−, ξ p, α, β, γ, η, τ , ν)

= (1 − α − β)Ip(x
′, z) − β E

pD
DKL(qφ(z|x)||pθ (z))

+ γ DKL(qφ(z)||pθ (z)) + (β − η)ξ+ + (γ − τ )ξ−

+ (α − ν)ξp (14)

We take the gradient over the loss, �L for ξ−, ξ+, ξp and
apply KKT optimality conditions to obtain,

L(θ, φ, α, β, γ ) = (1 − α − β)Ip(x
′, z)

− β E
pD

DKL(qφ(z|x)||pθ (z))

+ γ DKL(qφ(z)||pθ (z)) (15)

= (1 − α − β) E
z∼qφ(z|x)[ln pθ (x |z)]

− β E
pD

DKL(qφ(z|x)||pθ (z))

+ γ DKL(qφ(z)||pθ (z)) (16)

We set the Lagrangian adaptive hyperparameters as follows,

L(θ, φ, α, β, γ ) = (1 − αt − βt ) E
z∼qφ(z|x)[ln pθ (x |z)]

− βt E
pD

DKL(qφ(z|x)||pθ (z))

+ γt DK L(qφ(z)||pθ (z)) (17)

The adaptive weight αt controls the reconstruction error
while βt ensures the posterior latent factor qφ(z|x) does not
deviate significantly from its prior pθ (z). Varying both terms
gives us better control of the degree of disentanglement and
helps us to understand the parameters affecting density dis-
entanglement. The first term of the loss in Eq. 17 with weight
(1−αt −βt ) is the reconstruction loss, the second term with
weight βt is the Kullback-Leibler divergence, and the third
term with weight γt is a distance measure. αt , βt and γt are
controllable optimizable parameters based on reconstruction
loss, KL-divergence and the distance measure respectively.
We select the controllable parameters as proposed by Ezuk-
woke et al. (2022a).

The adaptive weight αt controls the reconstruction error
while βt ensures the posterior latent factor qφ(z|x) does
not deviate significantly from its prior pθ (z). Both prior,
pθ (z) and posterior, qφ(z|x) are typically modeled by a

Gaussian distribution. Note that the resulting latent vector
obtained on inference is re-parameterized following VAE
style (Kingma & Welling, 2014). The Encoder is parame-
terized by pretrained BERT (Devlin et al., 2019) weights.
BERT (Bidirectional Encoder Representations from Trans-
formers) is a model designed to predict masked or hidden
words within a given text. It uses a masked language model-
ing objective, where a certain percentage of the input tokens
are randomly masked, and the model is trained to predict
the masked tokens based on the context provided by the
surrounding tokens which allows it to learn bidirectional rep-
resentations by leveraging both the left and right context of
the masked tokens. However, the proposed model uses an
unmasked BERT Encoder version to allow for the free flow
of information to the latent space during learning.
Generation is done through the decoder by taking a re-
parameterized latent code, z from a smooth continuous latent
space with prior, p(z). The text sequence x is then gener-
ated by sampling from the posterior conditional distribution
pθ (x |z), which captures the conditional relationship between
the latent code and the generated text sequence, and modeled
as follows:

p(x) =
N∏

i=1

p(xi |x0:i−1, z) (18)

Where N is the size of the generated text sequence. the prior,
p(z) is modeled by a Gaussian distribution.

Experimentation

General setup

Experimental setup The experimentation is conducted on a
High-Performance Computing (HPC) cluster comprising 80
cores, 2× Intel Xeon E5-2698 v4 2.20GHz CPUs (80 cores),
512GB RAM, and 8 × Nvidia V100 32GB GPUs.
Pre-trained GPT-2. We fine-tune the medium versions of
GPT-2 with 335 million parameters after downloading the
pre-trained weights through the Huggingface API2 for the
purpose of failure analysis generation. The beginning of
sequence token, “bos,” is set to < |startoftext| >, the
end of sequence token, “eos,” is set to < |endoftext| >,
and the padding token, “pad_token,” is < |pad| >. The
batch size for training and evaluation is 1, the weight decay
is 0.05, and the number of training epochs is 100. GPT-2 is
trained on 40GB of WebText data, which consists of web
pages from outbound links on Reddit, excluding Wikipedia
pages. In our experiment, we employ a tokenization tech-
nique known as byte-level Byte Pair Encoding (BPE) to

2 https://github.com/huggingface/transformers.
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process the text data. This method divides the text into sub-
word units, allowing for more effective handling of rare or
out-of-vocabulary words. The result of this tokenization pro-
cess is a vocabulary containing 50,257 unique tokens with
the text sequences, structured as a series of 1024 consecutive
tokens. This sequence length is carefully chosen to strike a
balance between capturing sufficient contextual information
and managing computational efficiency during training and
inference.

Big GCVAE setup

Two key technical challenges suffice during pretraining of
Big VAE (Li et al., 2020) that need to be addressed for Big
GCVAE when incorporating BERT and GPT-2:

• Sentence representation: Since BERT and GPT-2 use
different tokenization schemes, it becomes necessary to
determine how to represent sentences consistently. This
involves finding a compatible representation that can
bridge the gap between the two models’ tokenization
methods.

• Conditional input adaptation: Another challenge arises
when attempting to adapt a pre-trained GPT-2 model
to handle arbitrary conditional inputs without requiring
retraining.While previous studies have explored control-
lable versions of GPT-2 by providing specific control
codes or tokens, it remains unclear how to effectively
ground GPT-2 to arbitrary conditional inputs, where no
predefined control codes or tokens are provided.

Tokenization

In BERT,WordPiece Embeddings (WPE) proposed byWu et
al. (2016) is used for tokenization, with a vocabulary size of
28,996 token vocabulary for the cased version. Following the
BERT convention, the initial token of each sequence is con-
sistently assigned as a distinct classification token ([CLS]),
and final hidden state associated with this token is used as the
aggregated representation of the entire sequence. This aggre-
gate representation serves as a valuable input for downstream
tasks, enabling the model to capture and leverage the contex-
tual information of the sequence in a meaningful manner.

InGPT-2, amodified version of Byte Pair Encoding (BPE)
introduced by Radford et al. (2019) is employed for tok-
enization, with a vocabulary size of 50,260. Each token is
represented as hEmb by summing the corresponding token,
position, and segment embeddings. To compute the recon-
struction loss, we present a sentence using both types of
tokenization: WPE for the input of the encoder and BPE
for the output of the decoder.

Unmasking

Masking is a concept introduced inBERTmodel and involves
selectively hiding certain tokens within an input sequence
during the pre-training phase. A percentage of the input
tokens are randomly chosen for masking to enable the
model learn a bidirectional representation by predicting the
masked tokens based on their context (Devlin et al., 2019).
This effectively gives BERT the name, Masked Language
Model (MLM). Selected tokens are then replaced with spe-
cial [MASK] tokens. Additionally, a small portion of the
selected tokens are replaced with random tokens from the
vocabulary to introduce further variation, making masking
an effective technique in the encoder-only transformer for
token prediction or classification purposes.

However, when incorporating a decoder component, such
as the GPT-2 model, to complete the Big GCVAE Encoder-
Decoder model, we hypothesize that the exclusive use of
masking limits the model’s ability to learn a quality bidirec-
tional representation. Consequently, this restriction hampers
the generalization of the latent space and considerably dimin-
ishes the mutual information within the bottleneck. This is
because the loss function of the GCVAE that we are mini-
mizing takes into account that we are reducing the mutual
information in the encoder. Therefore, masking the tokens
adds an extra layer of information compression. To overcome
this challenge, we propose the omission of masking, allow-
ing for constructive summarization of mutual information
within the latent space, as observed in classical transformer
architectures. This allows us to revert BERT to the classic
left-to-right (Peters et al., 2018; Radford & Narasimhan,
2018) bidirectional Language Model (biLM) and fitted for
generative architectural pairing for failure analysis triplets
generation without loss of generality.

Latent injection

Following a similar approach to BERT, the initial token of
each sentence in Big GCVAE is a special classification token
([CLS]). The hidden state h[CLS] in the last layer, corre-
sponding to this token, is extracted as the sentence-level
representation. To construct the latent representation z, we
employ the use of the weighted matrix WE ∈ R

R×H , where
z is a P-dimensional vector and WE is the weight matrix.
In order to enable the use of z in GPT-2 decoding with-
out necessitating retraining of the weights, two schemes are
considered. These schemes aim to effectively incorporate z
into the GPT-2 model during the decoding process, thereby
allowing for the generation of text conditioned on the latent
representation without the need for extensive model retrain-
ing.
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• Within the Big GCVAE framework, the latent represen-
tation z serves as an additional memory vector, denoted
as hMem , which GPT-2 attends to during decoding. This
is achieved by calculating hMem as the product of the
weight matrix WM and z. The resulting hMem is a vector
of length L , where L represents the number of layers in
GPT-2 and H denotes the length of each vector. Each
element of hMem is attended to by GPT-2 in its corre-
sponding layer.

• In addition to the memory role, z is also directly incor-
porated into the original embedding layer of GPT-2. This
is accomplished by adding the weighted version of z,
denoted as WDz, to the original embedding representa-
tion hMem . The weight matrix WD ∈ R

H×P , is used to
transform z into a suitable dimensionality for the addi-
tion. The resulting embedding representation is h′

Emb =
hEmb + WDz.

Dataset

In our experimentation, we use real failure analysis data
obtained from a semiconductor industry, specifically focus-
ing on successful failure analysis cases from the year 2019.
To prepare the data for training the transformer model, we
concatenate all input features, including the triplet data, along
the horizontal axis (x-axis). After preprocessing, the size of
the data for the year 2019 reduces to 5809 observation (or
FA analysis) of which 70% (4066) is used for training and
30% (1743) is used for evaluation. The input features used for
training, also referred to as Expert features, encompass ten
distinct aspects includingReference, Subject, Site,Requested
activity, Priority level, High confidentiality, Context, Objec-
tives / Work description, Source of failure / request, and
Source of failure (Detailed), and preprocessed using NLP
techniques according to Ezukwoke et al. (2021).

Evaluationmetric

NLG evaluation Bilingual Evaluation Understudy (BLEU)
is a context-free precision-based metric for evaluating the
quality of text which has been machine-translated from one
natural language to another (Lin & Hovy, 2003; Papineni et
al., 2002) and dialog generation task (Sai et al., 2022). It is
a precision-based metric that computes the n-gram overlap
between the reference (original) and its hypothesis. In partic-
ular, BLEU is the ratio of the number of overlapping n-grams
to the total number of n-grams in the hypothesis. Recall-
Oriented Understudy for Gisting Evaluation (ROUGE) (Lin,
2004) is a recall-basedmetric similar to BLEU-N in counting
the n-gram matches between the hypothesis and reference.
METEOR, proposed byBanerjee andLavie (2005) addresses
the major drawback of BLEU including, its inability to
account for recall and inflexible n-grammatching by propos-

ing an F-measure with flexible n-gram matching criteria.
LEvenshtein Sequential Evaluation (LESE) (Ezukwoke et
al., 2022b) metric is a measure used to quantify the dissimi-
larity or similarity between two sequences. The LESEmetric
is based on the concept of edit distance, which represents the
minimum number of operations required to transform one
sequence into another.
Cluster analysis Silhouette score (Rousseeuw, 1987) mea-
sures how well each data point is assigned to its own cluster
compared to how well it could be assigned to other clusters.
A Silhouette score of 1 indicates that all data points are per-
fectly clustered, while a Silhouette score of−1 indicates that
all data points are assigned to the wrong clusters. Conversely,
a low or negative score suggests overlapping clusters or mis-
classification. The Calinski–Harabasz index (CH index) or
variance ratio criterion, originally by Caliński & Harabasz
(1974), measures the ratio of the between-cluster variance to
the within-cluster variance. A high CH-index suggests that
the clusters arewell-separated and the data pointswithin each
cluster are similar to each other. The Davies–Bouldin index
(Davies & Bouldin, 1979) measures the average similarity
between each cluster and the cluster that is most similar to it,
relative to the size of the clusters. A lower Davies-Bouldin
index value indicates better-defined and more compact clus-
ters.

Quantitative evaluation: big GCVAE

We conduct performance comparison between Big GCVAE
and derivative models of GCVAE, such as ControlVAE and
β-VAE with Annealing KL-divergence (Li et al., 2020). We
adopt two versions of Big GCVAE based on the correlation
measure as follows:
Big GCVAE†: DKL(qφ(z)||pθ (z)) ←MaximumMean Dis-
crepancy.
BigGCVAE‡: DKL(qφ(z)||pθ (z)) ← SquaredMahalanobis
distance.
For thedecoder component,we employed theGPT-2medium-
size model, while the encoder is an uncased-BERT. This
comparison aimed to evaluate and contrast the performances
of these models. For Big VAE (β > 0), a KL thresh-
olding scheme (Fu et al., 2019b; Li et al., 2019), where∑

i max[λ, DKL(qφ(zi |x)||pθ (zi ))] replaces the classical
KL divergence term in the VAE loss function. The metric
reported in this section and the next (“Qualitative evaluation:
big GCVAE” section) is for one training step.

The optimal cluster size is determined using the Bayesian
Information Criterion (BIC), which involves running the
GMM multiple times with different predefined parameters.
Note that the cluster labels obtained from clustering the latent
space applies in visualizing the clusters in t-SNEEmbedding.

The performance of these models was analyzed in com-
parison to the GPT-2 medium-size decoder-only transformer
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Table 1 Performance evaluation
of Big GCVAE models and its
derivatives

Model Evaluation loss ↓ Reconstruction loss ↓ KL divergence ↗
GPT2-M 0.19 – –

Big VAE 1.10 128.34 6.49

Big ControlVAE 1.18 1.10 9.85

Big GCVAE† 1.18 1.09 8.23

Big GCVAE‡ 1.11 1.09 3.80

Both Big GCVAE† and Big GCVAE‡ have the lowest reconstruction loss compared to Big VAE (Li et al.,
2020)
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Fig. 6 2D Latent representation space (top) and t-SNE Embedding
(bottom). Observe the quality of clusters in the latent space for Big
GCVAE† (best), Big VAE (second best) and Big GCVAE‡ (less fuzzy).

The latent space of Big ControlVAE is the most fuzzy with overlapping
cluster of densities in t-SNE Embedding space

as a baseline. Big GCVAE‡ model demonstrates superior
performance compared to the benchmark Big variational
model across various evaluationmetrics, as indicated inTable
(3). When specifically applied for the FATG task, the Big
GCVAE‡ model outperforms GPT-2 medium, highlighting
the efficacy of controllable Lagrangian hyperparameters in
achieving optimal representation and generalizing the latent
space. The use of pretrained BERT-GPT-2 weights within
the BigGCVAEmodel significantly contributes tomitigating
overfitting issues and reducing the trade-off between recon-
struction and KL-divergence (see Table 1). A disentangled
representation is one whose latent factors are well summa-
rized and independently factored as a vector in the latent
representation space.

Big GCVAE† model yields quality latent presentation as
shown in Fig. 6 with well separated clusters (See CH-index
in Table 2), given their low reconstruction loss and mod-
erate KL-divergence. The moderate properties of the Big
GCVAE results in a well factored latent space whose clusters
are nicely knitted in the t-SNE embedding space as shown
in Fig. 6. We hypothesize the reason for the fuzziness of

Table 2 Validity indices showing the results of GMM on the latent
space, z and the 2-D t-SNE embedding

Model Silhouette score ↑ CH-index ↑ DB-score ↓
Latent space z

Big VAE 0.26 1697 1.42

Big ControlVAE 0.19 584 1.91

Big GCVAE† 0.22 1998 2.12

Big GCVAE‡ 0.17 590 2.05

t-SNE Embedding

Big VAE 0.17 1430 1.38

Big ControlVAE 0.13 1495 2.25

Big GCVAE† 1.17 2071 1.84

Big GCVAE‡ 0.10 819 7.92

Bold value indicates best performing model
High CH-index (Caliński & Harabasz 1974) of Big GCVAE† indicates
well separated clusters

the latent space of Big ControlVAE is due to the monotone
increasing KL divergence despite having competitively low
reconstruction loss in comparison to Big VAE. Conversely,
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the Big GCVAE‡ (Mahalanobis metric) faces challenges in
capturing the correlation between various failure decisions,
resulting in a fuzzy latent representation, primarily caused
by collapse of the precision matrix. This issue arises due
to the high likelihood of similarity in the embedding space,
increasing the likelihood of the inverse covariance matrix
collapsing. To address this issue, we employ an alternative
approach by using the inverse of the diagonal elements rather
than the entire covariance inversion.

Qualitative evaluation: big GCVAE

We conduct an evaluation of the generative capabilities of
the Big GCVAE models and its variants. The results reveal a
notable enhancement in the distribution of BLEU-1, BLEU-
3, and LESE-1, LESE-3 scores, as depicted in Fig. 7. The
figure clearly demonstrates an increased frequency of accu-
rately generated FATs by themodel that closely alignwith the
expert failure analysis. This observation is particularly evi-
dent in the right-hand side of the same Fig. 7, first row.When
compared to the decoder-only transformer model (GPT-2),
theBigGCVAEexhibits the potential to generate failure anal-
ysis sequences that are notably more realistic (following the
order of Step type; Substep technique and Equipment). This
improvement can be attributed to the Big GCVAE’s ability

to generalize effectively within the latent embedding space
associated with the task.

Subsequently, we conduct a performance comparison
between Big GCVAE‡ and GPT2 to assess their genera-
tive capabilities and determinewhether the generated outputs
are plausible decisions that a failure analyst engineer would
make. Note that all assessment of the generative strength of
each model based on the output for specific failure descrip-
tion is validated by industrial expert. In the next “FATG:

comparing Big GCVAE and GPT-2” section, we provide a
comprehensive analysis of the failure root cause analysis
generated for a given failure description from the expert’s
perspective.

FATG: comparing Big GCVAE and GPT-2

• Grenoble Kostal leakage on GH2: The failure analysis
triplets generated by Big GCVAE for root cause analy-
sis on product packages are generally plausible, except
for the third triplet (Physical analysis; Optical inspection;
Stereomicroscope szx16 (ecn 6590)). The discrepancy in
this triplet arises from the fact that the Substep technique,
Optical inspection, and Equipment, Stereomicroscope
szx16 (ecn 6590), are not appropriate for a Physical anal-
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ysis (Step type). In other words, the Substep technique
and Equipment are correct for the step type Electrical
Failure Verification, rather than Physical analysis. On
the other hand, the FATs generated by GPT2 are also
plausible, but they contain a higher number of redundant
failure analysis triplets. Furthermore, the FATs generated
by GPT-2 are more focused on root cause analysis within
the silicon.

• Grenoble B601 Face ID H9A HCMOS9A WLCSP
CSP H9A HCMOS9A CSP gate oxide breakdown
Please to find root cause on Face ID issue: The fail-
ure analysis triplets generated by both Big GCVAE and
GPT2 are plausible for the respective contexts of prod-
uct packages and silicon. A surprising question by failure
analyst expert is how both models are able to specifically
find FATs specific to different context (product package
and silicon). We hypothesize that Big GCVAE generates
FATs from the abundance of space it generalizes. This
may be a reason why it generates two incorrect sample
preparation triplets, including: Sample preparation bake /
temperature storage to300 and Sample preparation appli-
cation/board sawing tool decap.

• B601 RIGEL3 ORT AMKOR HTOL Small Leakage
Consumption VINCORE2 in power down: The fail-
ure analysis triplets generated by both Big GCVAE and

GPT-2 are entirely incorrect and implausible. This can be
attributed to the lack of guiding keywords (or prompts),
which are crucial for the models to make accurate pre-
dictions for the next words (triplets) in the sequence. The
effectiveness of generative models relies on the ability
to associate seed words with relevant data points in the
embedding space in order to generate meaningful and
contextually appropriate tokens.

• PPMASSESSMENTF9V4MEGCROSS-SECTION:
Similar to the previous FATG challenge, the failure anal-
ysis triplets generated in this case are incorrect and lack
plausibility for the given failure description. This is pri-
marily due to the absence of the keyword cross-section in
the proposed sets of analysis, and since no cross-section
keyword is found in the generated FATs, it is a hallu-
cinated decision. Including this keyword with sufficient
context in the failure description is essential for gener-
ating relevant and accurate failure analysis triplets that
align with the specified failure scenario.

This paper presents real-world use cases to demonstrate
the generative efficacy of Big GCVAE, a large-scale lan-
guage model that has been fine-tuned on failure analysis data
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from the semiconductor industry using an adaptive loss func-
tion called GCVAE. Our findings highlight that although the
model may not consistently generate precise failure analysis
sequences specific to a given failure description, it showcases
a robust representation space that can be further enhanced by
providing high-quality failure description keywords and an
initial failure analysis triplet as a seed. This underscores the
potential of Big GCVAE in assisting failure analysis engi-
neers during the decision-making process for failure root
cause analysis.

In our comparative analysis between Big GCVAE and
GPT2, we observed that Big GCVAE generally demonstrates
superior generative performance. The model exhibits the
ability to generate more coherent and contextually appropri-
ate failure analysis triplets for decision-making during failure
root cause analysis.

However, despite its overall proficiency, Big GCVAE
faces occasional challenges in accurately capturing the cor-
rect sequence of triplets from the latent space z. As a result,
it may produce unrealistic triplets that do not align with the
expected context or domain-specific knowledge. An example
of such a limitation is when themodel erroneously associates
a Substep technique, such as Optical inspection, with an
inappropriate Step type, such as Physical Analysis, instead of
the correct Electrical Failure Verification type. These occur-
rences indicate that while Big GCVAE excels in generating
meaningful triplets, there is still room for further enhance-
ment in its ability to ensure precise correspondence between
the generated triplets and their relevant context within the
failure analysis domain.

Conclusion

To overcome the challenges of robust representation and
high-quality generation of failure analysis triplets, we pro-
pose a new approach that involves fine-tuning a Transformer-
based Variational Autoencoder (VAE) architecture using
an unmasked pre-trained BERT Encoder and a GPT2
Decoder. By leveraging the Generalized-Controllable Vari-
ational AutoEncoding (GCVAE) loss, our model aims to
achieve an optimized representation with a low reconstruc-
tion loss and highly disentangled latent space. Our evaluation
of the model’s performance in generating failure analysis
triplets yields the following key findings:

• Big GCVAE can generate failure analysis triplets that are
logical and reasonable, providing valuable insights for
expert failure analyst engineers in the decision-making
process.

• The model demonstrates its ability to generate failure
analysis triplets specifically tailored to root cause iden-
tification in product packages, and it can also address
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Fig. 7 BLUE-1 and BLUE-3 scores distribution (top) and LESE-1 and LESE-3 scores distribution (bottom) for Big ControlVAE, VAE, GCVAE†

and GCVAE‡ models

potential root causes within a Silicon. This is made
possible by the model’s ability to generalize and draw
predictions from the embedding latent space.

• Notably, Big GCVAE is a self-supervised model that
operates with adaptive-controllable hyperparameters,
eliminating the need for human intervention in the
decision-making process.

In summary, Big GCVAE is a robust model that can gener-
ate failure analysis triplets (sequences of text-encoded steps
for analyzing defective components in the semiconductor
industry) that are logical, reasonable, and tailored to spe-
cific problems. The model is able to do this by learning to
represent failure analysis triplets in a latent space that is both
disentangled and informative. Additionally, Big GCVAE is a
self-supervisedmodel, meaning that it can be trained without
the need for human-labeled data.

Big GCVAE has the potential to be a valuable tool for
failure analyst engineers in the semiconductor industry. By
providing them with logical and reasonable failure analysis
triplets, Big GCVAE can help them to identify root causes
more quickly and accurately. Additionally, Big GCVAE’s
ability to generalize and draw predictions from the embed-
ding latent space makes it a powerful tool for addressing new
and emerging failure scenarios.

Limitation

Despite the overwhelming performance of Big GCVAE
(BERT-GPT2) model for the task of failure analysis triplets
generation, it stills suffers significant challenge that can be
addressed. It is crucial to acknowledge that the model may
occasionally generate unrealistic failure analysis triplets due

to the phenomenon of hallucination. This can be both a prob-
lem of overgeneralization and overfitting. However, no par-
ticular metric perfectly addresses this phenomenon, except
the quantitative and domain expert evaluations mentioned in
“Quantitative evaluation: bigGCVAE”and “Qualitative eval-
uation: big GCVAE” sections respectively. This limitation
highlights the need for further refinement and improvement
by prompt engineering failure description and using rein-
forcement learning to mitigate the occurrence of unrealistic
outputs.
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