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Abstract
Fault analysis (FA) is the process of collecting and analyzing data to determine the cause of a failure. It plays an important role
in ensuring the quality in manufacturing process. Traditional FA techniques are time-consuming and labor-intensive, relying
heavily on human expertise and the availability of failure inspection equipment. In semiconductor industry, a large amount
of FA reports are generated by experts to record the fault descriptions, fault analysis path and fault root causes. With the
development of Artificial Intelligence, it is possible to automate the industrial FA process while extracting expert knowledge
from the vast FA report data. The goal of this research is to develop a complete expert knowledge extraction pipeline for
FA in semiconductor industry based on advanced Natural Language Processing and Machine Learning. Our research aims
at automatically predicting the fault root cause based on the fault descriptions. First, the text data from the FA reports are
transformed into numerical data using Sentence Transformer embedding. The numerical data are converted into latent spaces
using Generalized-Controllable Variational AutoEncoder. Then, the latent spaces are classified by Gaussian Mixture Model.
Finally, AssociationRules are applied to establish the relationship between the labels in the latent space of the fault descriptions
and that of the fault root cause. The proposed algorithm has been evaluated with real data of semiconductor industry collected
over three years. The average correctness of the predicted label achieves 97.8%. The method can effectively reduce the time
of failure identification and the cost during the inspection stage.
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Introduction

Researchmotivation

Fault analysis (FA) is the process of determining the root
cause of a failure, collecting and analyzing data, as well
as drawing conclusions to eliminate the Failure Mechanism
(FM) (Martin, 1999). It is primarily conducted in safety-
critical applications, such as automotive, aerospace, marine,
semiconductor, and digital systems. For crucial electronic
components and systems, FA is one of the most important
steps in reliability analysis (Bajenescu & Bazu, 2012).
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In the field of microelectronics, the root causes of the
fault can come from different aspects: manufacturing pro-
cess, design, environment, andmaintenance. Tofigure out the
root cause, traditional FA techniques include visual exami-
nation, physical or chemical analysis, nondestructive testing,
package construction analysis, fault localization, circuit edit,
wafer construction analysis, etc. On the one hand, the major-
ity of these traditional FA techniques are strongly dependent
on human expertise by involvingmanual analysis and inspec-
tions, which are often time and labor-consuming. On the
other hand, a vast amount of data is generated during the
whole FA procedure. The data includes not only numeric
and image information recorded during the inspections but
also textual documents provided by experts reporting their
tasks, findings, and conclusions regarding each device (Plat-
ter et al., 2021).

To overcome the limitations of the traditional FA tech-
niques, the big data generated during the traditional FA needs
to be deeply explored. Artificial intelligence (AI) is opening
a new era to help FA explore this valuable data. The main
objective of this paper is to propose a Natural Language Pro-
cessing (NLP) and Association Rule (AR)-based method to
efficiently extract expert knowledge of FA applied on semi-
conductor industry. Here, the proposed FA algorithm belongs
to the Safety-I approach defined in Hollnagel (2018). For
Safety-I approach, failure events are taken as the focus point
and the overall method tries to prevent failures from occur-
ring, while the Safety-II approach focuses on non-failure
cases.

Context andmain contributions of this paper

To benefit from the historical FA reports, this article pro-
poses a complete AI-based knowledge extraction pipeline to
automatically predict the final failure cause based on the fail-
ure description. To this end, NLP-based techniques are first
applied on a huge industrial dataset provided by STMicro-
electronics to convert text data into numerical data as well
as to model the data in a latent space with reduced dimen-
sion. In our previous study (Wang et al., 2022), Word2vect
was used to embed the text data then Gaussian Mixture
Model (GMM)was applied to perform clustering in the latent
space of the Fault Root Cause Space (FRCS) obtained by
the Variational AutoEncoder (VAE). FRCS is a space that
summarizes the fault root cause recorded in the FA report
through the Fault Reporting, Analysis, andCorrectiveAction
Systems (FRACAS) (Ezukwoke et al., 2021). Word2vect is
proposed byMikolov et al. (2013) to convert text into numer-
ical data through learning the similarity between tokenized
words from different documents with a neural network. As a
statistical tool, GMM is proposed in Reynolds et al. (2009)
to model the distribution of random variables by a mixture
of Gaussian distributions in order to parametrically estimate

them. VAE is a type of autoencoder to reduce the dimension
of the features by sampling the input data set xi from a prior
distribution pθ (z) to the output data x ′

i while keeping the
output as similar as the input (Kingma & Welling, 2013).

This paper extends our previous research by first applying
a more efficient NLP embedding technique, i.e., Sentence
Transformer, separately on Fault Description Space (FDS)
and Fault Root Cause Space (FRCS). Then, more impor-
tantly, Association Rules (AR) are established between the
latent space of FDS and FRCS, which link the observed
pattern description with the fault conclusion. In this way,
a complete close loop knowledge extraction pipeline is
developed. The proposed algorithm is able to determine the
conclusions of the analysis and find the root cause of the fault
more easily, accurately and automatically when the same cat-
egory of fault occurs. Moreover, the parameters of the model
in the proposed method are automatically updated in a con-
tinuous way along with new data. This allows the model to
be generalized to new fault cases and provides the possibility
of continuous improvement in the expert knowledge trans-
fer. To summarize, the main contributions of this work are as
follows:

– The text data from the FDS and the FRCS are separately
converted into numerical data by NLP using Sentence
Transformer;

– The Generalized-Controllable Variational AutoEncoder
(GCVAE) is employed to re-represent the embedding
space and reduce the original dimension using Bayesian
inference to obtain high disentanglement performance
and minimal information ;

– After clustering by GMM in the latent spaces of FDS
and FRCS, Association Rules (AR) are established to
determine the relationship between different categories
in FDS and different groups in FRCS.

– By combining the previously proposed modules, a com-
plete AI-based knowledge extraction pipeline is obtained
for FA. The method is applied and evaluated on real
industrial data of semiconductor domain with a high
potential for real-scenario implementation.

The obtained AI model can automatically predict the fault
root cause based on the fault description. It can help experts
narrow down the potential causes of error before going
through different fault analysis inspections. The method can
effectively reduce the time of failure identification as well as
the cost during the inspection stage.

Organization of the paper

The remainder of this paper is organized as follows: the state-
of-the-art technologies regarding AI-based FA are summa-
rized in “State of the art”, the proposedmethod is presented in
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“Description of the method”. “Experiments results” demon-
strates the performances of the proposed method applied on
real industrial data. Finally, “Conclusions and perspectives”
draws conclusions and proposes future works.

State of the art

In the current literature, much research focuses on the appli-
cation of AI to improve FA inspections using the numeric
data or image data. Amultiple time-series convolutional neu-
ral network (MTS-CNN) model using the equipment sensors
data is proposed by Hsu and Liu (2021) for fault detec-
tion and diagnosis in semiconductor manufacturing. The
experimental results show that this model outperforms other
existingmultivariate time-seriesmethods. InGu et al. (2022),
amethod ofDeep-Learning forHigh-ResolutionReconstruc-
tion (DLHRR) is proposed to improve the scanning speed
in 3D non-destructive X-ray microscopy (XRM) for fault
analysis. An Automatic Defect Classification system (ADC)
using Deep Learning to automatically classify wafer surface
defects is proposed by Phua and Theng (2020). Large-scale
integration (LSI) layout images were classified using Con-
volutional neural networks (CNNs) to perform Root Cause
Analysis (RCA) of layout-related defects (Nagamura et al.,
2021). A novel Hypergraph Convolution Network is pro-
posed to classify the wafer defect images in Xie et al. (2022).
However, few researches deal with knowledge extraction
from the historical reports of FA which are mostly textual
data. The following subsections make a literature review
while emphasizingAI-based FA, especiallywith textual data.

NLP applied in fault analysis

Since most of the data consists of text, Natural Language
Processing (NLP) is required to preprocess this textual data
first. The efficiency of pre-trained LanguageModels (LM) in
the semiconductor domain for text classification with deep
neural networks is studied by Grabner et al. (2022), whose
result is not as good as that of the Word2vect model and the
Linear SupportVectorClassifier (SVC). Trappey et al. (2021)
develops themethodology for a patent recommender in smart
machinery technology mining of intelligent machines to dis-
cover semantically relevant patents for further technology
mining and trend analysis. In Ezukwoke et al. (2021), NLP
techniques are presented to find a coherent representation of
expert decisions in fault analysis in the semiconductor indus-
try. Once the textual fault analysis data is transformed into
numerical data by NLP, deep learning technology is applied
to both reduce the dimension of this numerical data and clus-
ter this latent space into different groups.

Deep learning in fault analysis

Deep learning based on artificial neural networks can help
the industry find the root cause automatically and quickly. In
Dimitriou et al. (2019), a system is proposed that automates
fault diagnosis by accurately estimating the volume of glue
deposits using a three-dimensional (3-D) convolutional neu-
ral network (3DCNN) before and even after die attachment.
Watanabe et al. (2019) presents image diagnosis by Con-
volutional Neural Network (CNNs) based image diagnosis
applied to power device fault analysis. Wang et al. (2022)
compares different deep learning methods based on VAE
(Variational AutoEncoder) and concludes that Generalized-
Controllable Variational AutoEncoder (GCVAE) by Ezuk-
woke et al. (2022) is the best model to find an intelligent
optimal representation of fault analysis written in natural
language. Once we reduce the dimension using VAE-based
Deep Learning, we obtain the latent spaces. The machine
learning methods are necessary to perform the clustering in
these latent spaces. The goal is to cluster the FDS and the
FRCS into different groups.

Machine learning in fault analysis

Machine learning is permeating more and more academic
disciplines and industries, especially the fields of reliability
engineering and safety (Xu & Saleh, 2021). Six machine
learning models (Naıve Bayes, decision trees, K-nearest
neighbors, quadratic discriminant analysis, random forests,
and artificial neural networks) are applied and compared
to predict the failure mode in circular reinforced bridge
piers in Mangalathu and Jeon (2019). The author of the
above conclusion that Artificial Neural Network (ANN),
outperforms other machine learning models. Unsupervised
machine learning is preferred in most industrial applications
due to the additional and difficult work for the industry lab in
collecting the labeled output data. Wang et al. (2020) com-
pared the K-means and Gaussian Mixture Model (GMM)
in clustering the machining data in real-time and concluded
that GMM performs better on unbalanced data, which is
exactly applicable to our case. The distribution of latent space
obtained by GCVAE in the above section could be modeled
as a mixture of Gaussian distributions (different clusters),
which is consistent with the concept of GMM. The larger the
number of parameters to be estimated in the GMM model,
the better the model is able to generalize the data. However,
the complexity of the calculations also increases. Therefore,
Bayesian information criterion-BIC (Schwarz, 1978) is used
to find a trade-off between the optimal number of clusters in
the GMM and the complexity of the calculations.

After obtaining the different groups in FDS and FRCS by
clustering, we need to find the potential correlation between
different groups in FDS and different groups in FRCS. To
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achieve this, Association rule learning is preferred in this
case. TheAssociation Rules (AR) proposed byAgrawal et al.
(1993) aim to discover the rules that determine the potential
association between elements in each transactionwith a large
number of elements. Antomarioni et al. (2022) proposes a
framework that aims to deepen the fault analysis by apply-
ing association rule mining and social network analysis. In
Antonello et al. (2021), the association rule mining algo-
rithm is applied to identify groups of functionally dependent
components in a complex technical infrastructure. The most
common evaluation metrics for AR are support, confidence,
and lift (Hahsler et al., 2005). They are the metrics used to
establish the intercorrelation between the different groups in
FDS and FRCS.

Description of themethod

Dataset structure description

The dataset used in this paper is a real industrial one provided
by STMicroelectronics through the Fault Reporting, Analy-
sis, and Corrective Action System (FRACAS) from 2019 to
2021 (Ezukwoke et al., 2021). It consists of 12,032 observa-
tions and 134 features, where 88 features consist of text or
categories and 46 features consist of numbers. Considering
that the majority of the data is in text format, the application
of NLP techniques is required. Three different sections could
be found in this data set:

– Fault Description Space (FDS) which describes the fault
context or reference (denoted xn);

– Analysis Paths Space (APS) which represents the fault
analysis triplets registered by the industry (denoted λn);

– Fault Root Cause Space (FRCS) which describes the fail-
ure cause (denoted yn).

Figure 1 illustrates the FA decision flow graphic followed by
industrywith FDS,APS and FRCS.Different failure descrip-
tions {A, B,C, D . . .} have different observation length n ∈
[1, i − 1].

The FDS includes attributes such as Reference, Context,
Subject, Requestor, etc. Table 1 shows all the 25 features in
FDS as well as their descriptions and data examples. The
analysis paths (λn) are composed of FA Triplets (FATs)
which is a series of Step type, Substep technique, and Equip-
ment proposed by a failure analyst regarding the actions to
find the failure root cause. For example, ‘Non-destructive
Inspection’ is the Step type and ‘X-ray’ is the Substep tech-
nique while ‘3D X-RAY’ is the name of Equipment. The
number of these actions is different for each failure descrip-
tion so a padding is made based on the longest FAT. Finally,
the FRCS (yn) is represented by Analysis conclusion, Tech

cause / Defect by sample, etc. as shown in Table 2. In this
work, the objective is to predict the probable cause of the
defect by determining the relationships between the FDS and
the FRCS through NLP, machine learning and deep learning.

Overview of themethod

Figure 2 presents an overview of the proposed NLP-based
knowledge extraction architecture for FA using the natural
language database of historical fault analysis reports. The
green dashed area represents the work in the previous study,
while the purple dashed area illustrates the contributions in
this article. Most of the features in this report are text data, an
NLP method is required to preprocess the FDS data and the
FRCS data. Then, the text data is converted into numerical
data using the Sentence Transformer proposed in Reimers
and Gurevych (2019). The numeric dataset contains many
features (384 for FDS and 384 for FRCS). To reduce the
dimension of this large dataset containing complex nonlin-
ear features,Auto-Encoders (AE) are preferred since they can
model complex nonlinear functions (Hinton & Salakhutdi-
nov, 2006). We also need to perform clustering in the latent
space, which can be achieved by Variational AutoEncoders
(VAE). After that, the latent spaces with two dimensions for
FDS and FRCS are respectively obtained. The unsupervised
machine learning based on GaussianMixtureModel (GMM)
is used to cluster these two latent spaces. Then, the labels in
the FDS and FRCS are determined. Finally, the AR are estab-
lished to find the potential relationship between the labels in
FDS and in the FRCS. The details of each module will be
presented in the following sub-section.

Data preprocessing pipeline and vectorization

Given the set of variables contained in FRCS ({yi }ni=0 ∈
R

D),where D is the dimension of y, are textual, and contain
exactly 7 features (Table 2). Similarly, the data type of the
input variables for the given FDS ({xi }ni=0 ∈ R

D) are textual
variables and, in particular, include 25 features (Table 1). We
need to preprocess the FDS and the FRCS independently and
identically (as seen in Fig. 2) using the following preprocess-
ing pipeline, which is divided into five main steps. The first
four steps of preprocessing are the same as in our previous
work (Wang et al., 2022). In addition, the Sentence Trans-
former is applied to convert the textual data into numerical
data, as it’s able to derive semantically meaningful sentence
embeddings (Reimers&Gurevych, 2019). Thefivemain pre-
processing steps applied to the FDS and FRCS variables are
as follows:

• Cleaning andpreprocessing: involves removingunwanted
alphanumeric words and symbols from the text that do
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Fig. 1 FA decision flow graphic: Fault Description Space, Fault Analysis Path Space and Fault Root Cause Space. A, B, C, D are different failure
descriptions with different numbers of observations n

Table 1 Brief description of the failure description space (FDS) features and their corresponding data examples

Features in FDS Description Data example

Reference Associated the fault analysis team, FA-lab, year and ID AGR_DMA_18_00115

Subject A particular unique subject for the fault expert desire to analyze H9A load failure

Context Context of the fault analysis Wafer from SINGAPORE IDDq reject SG9 767

Objectives/work description Objective of the fault analysis Check for delamination

Source of failure/request Identifier source of the failure for the component of a given sample Reliability/monitoring

Source of failure/(detailed) Details of the source of the failure Manufacturing

Organization The organization handling FA DMA

Organization/division The organization division handling FA Digital quality

Department FA department handling FA Indust process

Requestor The requestor requesting for FA of the sample GODUCHEAU Olivier

Cost center Identifier corresponding to the cost of FA for a sample AG6150

Confidentiality Level of confidentiality of FA ST only

Site Fault analysis lab site Grenoble

Lab The section of the division where analysis or sub-analysis is done Cornaredo FA-Lab

Lab team Lab division name AGR_DMA

Requested activity Major fault analysis requested by expert or client Fault analysis

High confidentiality Unique identifier stating if FA is confidential high or not Yes/no

Project Unique reference number assigned to an FA DMA_Digital

Priority level Level of priority given to failure device P0, P1, P2 or P3

Date of creation Date of creation of the fault analysis record 02-JAN-19 16:55

Date of validation Validation date to begin fault analysis 26-MAR-19 14:47

Requestor expected date Date expected by the requestor to begin fault analysis 28-FEB-19

Lab team forecast date Forecast date to begin fault analysis 28-FEB-19

Starting date of request Date of start of a request 03-JAN-19 07:10

Last transition date Last date of transition of the sample 05-JAN-19

not contribute to the analysis. This includes the removal
of stop words and inflections;

• Text Tokenization: Tokenization involves breaking down
texts into their smallest units, whereupon a threshold
is applied to remove words of short length. In our
case, words below a length of three are removed for all
input/output;

• Stemming and Lemmatization: removal of suffixes and
inflections to transform words into their original base
form;

• Abbreviation:Because abbreviations are common in fault
analysis reports, an abbreviation dictionary is used to
compare and replace abbreviations with their original
meaning;
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Table 2 Brief description of the Fault Root Cause Space (FRCS) features and their corresponding examples

Features in FRCS Description Data example

Analysis conclusion Final conclusion of the analysis by experts Random wafer fab defect under Cu RDL metal level

Global success rate Success rate of the overall fault analysis Successful

Unsuccessful reason Reasons for the failure of an analysis to yield expected result No physical defect found

Macro failure mode by sample Macro failure mode Parametric failure

Pt failure/Elt by sample Location of defect BEoL_Die edge/wafer sawing street

Elementary failure mode Elementary failure observed during analysis Short

Tech cause/defect by sample Technical cause of the failure Large silicon melting

Fig. 2 An overview of the proposed NLP-based knowledge extraction architecture for FA: the green dashed area represents the previous study and
the purple dashed area illustrates the contributions in this work (Color figure online)

• Sentence Transformer: Sentence Transformer proposed
by Reimers and Gurevych (2019) is an efficient NLP
technique for converting text into numerical data. In this
algorithm, semantically similar sentences can be found
by the similarity measure such as cosine similarity or
Manhattan/Euclidean distance from different documents
using a neural network. In thiswork, all features are trans-
formed separately in the FDS and FRCS. Therefore, the
text data is transformed into numerical data.

After Sentence Transformer, we also perform the ‘Min-
MaxScaler’ to keep all of the features inside the range of 0
and 1. Figure 3 represents some examples of features in FDS
xn before data preprocessing and the corresponding features
after transformation.

Dimension reduction byVAE

The text data were converted to numeric data by the data
preprocessing pipeline. Feature engineering is necessary to
reduce the dimension of numerical data because a large
amount of features are generated (384 features in FRCS).
Auto-Encoders (AE) perform better than Principal Compo-
nent Analysis (PCA) on complex nonlinear data in reducing
the dimension of numerical data (Hinton & Salakhutdinov,
2006), which is also the case in our work. Moreover, Vari-
ational AutoEncoders (VAE) are used to reduce the data
dimension and reconstruct our original text data, as the latent
space generated by GCVAE (Ezukwoke et al., 2022) could
help us in clustering. In the article Wang et al. (2022), differ-

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Journal of Intelligent Manufacturing (2025) 36:357–372 363

Fig. 3 The features in FDS xn before data preprocessing pipeline and after transformation

ent variational models were compared by applying them to
theFRCS (yn) to reduce the dimension of numerical data, and
their performances were evaluated using existing metrics.
The Generalised-Controllable VAE (GCVAE) is the most
suitable for our case. Subsequently, GCVAE is also applied
to reduce the numerical data obtained in the latent space from
FDS (xn).

Clustering in the latent space

Once we reduce the dimension of the latent space to 2 in
FDS and FRCS separately, we need to cluster these latent
spaces with 2 dimensions. In this work, we use unsupervised
machine learning because it is difficult to collect labeled out-
put data in the industry. And the Gaussian Mixture Model
(GMM) is most effective for unbalanced data, which is the
case in industry. The optimal number of clusters in the GMM
is determined by a Bayesian Information Criterion (BIC)
(Schwarz, 1978).

Establish the relationship between FDS and FRCS

One main challenge of AI-based knowledge extraction tech-
nique is its interpretability especially when the text data is
converted into numerical latent space. The question here is
how to establish the relationship between the clustered latent
spaces of FDS and that of FRCS in order to link the fault
description with the fault root cause. To this end, we propose
to establish the mapping functions using Association Rules
(AR). AR is a data mining technique to discover potential
dependencies or rules among different items based on their
co-occurrence in events or transactions. They are useful in

a variety of domains including marketing, recommendation
and decision-making systems.

Let I = {i1, i2, . . . , in} be a set of n attributes called items.
In our case, I is composed of different labels in FDS (xn) as
well as the different labels in FRCS (yn). Each transaction
(or called observation ) in our database contains a label of
FDS (X_i) and a label of FRCS (Y_ j). The objective is to
propose the possible fault root cause conclusion (yn) based
on the fault description (xn) by creating an intercorrelation
between each label of FDS (X_i) and each label of FRCS
(Y_ j).

To ensure a highly meaningful result, the AR need to be
established according to several metrics. The most common
evaluation indicators for AR are support, confidence and lift
(Hahsler et al., 2005).

Support is defined as the occurrence frequency of the item-
set associated by a rule in the dataset (Agrawal et al., 1993).
In our case, Support is defined for each associated labels X_i
in FDS and Y_ j in FRCS as follow:

Support(X_i ⇒ Y_ j) = #{X_i ∪ Y_ j}
#{T } (1)

where the notation “#” means the occurrence of an event;
#{X_i ∪Y_ j} is the number of fault events containing obser-
vation X_i and fault root cause Y_ j, while #{T } is the total
number of fault events in our dataset.

Confidence is a metric to indicate how often the rule has
been found to be true. In our case, for a rule X_i ⇒ Y_ j, it
is calculated with the percentage of all fault cases containing
the observations X_i that lead to fault root case Y_ j among
all the fault cases containing observation X_i, as shown in
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the following equation:

Con f (X_i ⇒ Y_ j) = Support(X_i ∪ Y_ j)

Support(X_i)
(2)

Lift is an indicator to determine whether the two items are
independent. It is the ratio between the observed support and
the expected support. It is defined by the Eq. 3. The value of
Li f t(X_i ⇒ Y_ j) near to 1 indicates X_i and Y_ j almost
often appear together as expected. If it is greater than 1, that
means they appear together more than expected and vice
versa. Higher lift values indicate a stronger association:

Li f t(X_i ⇒ Y_ j) = Support(X_i ∪ Y_ j)

Support(X_i) · Support(Y_ j) . (3)

In summary, the higher these three indicators (Support,
Confidence, Lift) are, the better the prediction will be.

Many well-known algorithms for generating AR are pro-
posed in the literature (e.g., Apriori, Eclat in Xiao et al.,
2016, and FP-Growth in Ji & Deng, 2007). However, all
algorithms require to fix hard thresholds for each indicator
(Support,Confidence,Lift). Obtaining these thresholds needs
additional industrial expert knowledge and they cannot flex-
ibly adapt to different fault events.

In our case, for each cluster X_i in FDS, all possible asso-
ciation rules are generated with each cluster Y_ j in FRCS.
The three previously mentioned metrics are calculated and
sorted. For each metric, the 5 highest values are selected. In
particular, the Lift values need to be higher than 1. The final
selected rules by each metric are then considered together to
provide the final association rules to link fault descriptions
and fault root causes. The pseudocode of the proposed algo-
rithm is shown in Algorithm 1 below which is described as
follows:

1. Find the cluster to which this fault description belongs
according to the clustering in the FDS (xn), for example,
X_i .

2. For each X_i, compute the Support(X_i ⇒ Y_ j), the
Con f (X_i ⇒ Y_ j) and the Li f t(X_i ⇒ Y_ j) for each
cluster Y_ j in FRCS (yn).

3. Keep the rules X_i ⇒ Y_ j for which the Li f t(X_i ⇒
Y_ j) is greater than 1. Sort the values for each indicator,
and keep the 5 maximum values and the corresponding
rules.

4. Till now, each indicator has 5 rules with maximal values.
We select the rules that appear in all these three indicators.
These rules are proposed to predict the conclusions of the
fault analysis.

Algorithm 1 Establishing association rules between the
latent spaces of FDS and FRCS
1: for X_i ∈ FDS, i = 1, 2, . . . , N do
2: for Y_ j ∈ FRCS, j = 1, 2, . . . , M do
3: Calculate Support(X_i ⇒ Y_ j)
4: Calculate Con f idence(X_i ⇒ Y_ j)
5: Calculate Li f t(X_i ⇒ Y_ j)
6: end for
7: end for
8:
9: Sort each metric in descending order
10: For Support andConfidence, keep the ruleswith the 5 highest values
11: For Lift, keep the rules with 5 highest values while >1
12: The intersections of the rules selected according to each metric will

be the final association rules to link the FDS and FRCS

Experiments results

Experimental data

The original data in this paper, taken from the historical fault
analysis reports, are provided by STMicroelectronics for the
period 2019–2021 and have dimensionR12032×134.The orig-
inal data can be mapped into three spaces as mentioned in
“Description of the method”. The goal is to help the industry
expert by predicting the conclusion of the analysis in FRCS
(yn) based on the FDS (xn) without or with less help from
APS (λn). As described in the above section, we need to
preprocess the original data, which is mostly in text form.

Preprocessing pipeline

The original data is preprocessed according to the data
preprocessing pipeline as explained in “Description of the
method”. The original data is transferred to the steps of
data cleaning, tokenization and thresholding, stemming and
lemmatization, and abbreviation. In the last step, the text data
are converted to numeric by Sentence Transformer (Reimers
& Gurevych, 2019) using semantic analysis of sentences
within the algorithm, which is better than Word Embedding
in Wang et al. (2022) Then the text data is converted into
numeric data with many features. Then the feature engineer-
ing method is needed to reduce the dimension of our data.

Features’dimension reducing by GCVAE

As described in the previous research,VAE is chosen because
Auto-Encoder (AE) is better suited for complex nonlinear
functions (Hinton&Salakhutdinov, 2006), which is our case.
Also, we need to perform clustering in latent space, which is
only possible with VAE. Many VAE algorithms are applied
in the FRCS to reduce the dimension of features in Wang
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Fig. 4 Encoder–Decoder
architecture for GCVAE-II (with
MAH distance)

et al. (2022), and GCVAE outperforms the others. Mean-
while, GCVAE-II is chosen (with the expected MaHalanobis
Distance-MAH between the density function of two continu-
ous variables) to reduce the dimension of the features in FDS
and FRCS separately. Because GCVAE-II can give a better
result and the computational complexity is the least compared
with GCVAE-I (with Maximum-Means Discrepancy-MMD
distance between the density function of two continuous
variables) and GCVAE-III (squared Mahalanobis distance
between the density function of two continuous variables).

The Encoder–Decoder architecture for the GCVAE-II is
shown in Fig. 4. 1-D Convolution with 64 layers firstly and
32 layers secondly along with max-pooling and batch nor-
malization are applied in the encoder. Moreover, the same
method is used with upsampling in the decoder. The Adam
optimizer (Kingma&Ba, 2014)with a learning rate of 1×e−5

and a batch size of 64 is applied during GCVAE-II model
training. After 200 iterations, we train the GCVAE-II model
in 2 dimensions of the latent space.

Clustering the latent space of input and output by
GMM

Sincewehave obtained the latent spaceswith twodimensions
for the FDS and FRCS in the above step. Clustering using
GMM in the latent space of FDS and FRCS can be done
separately. Here, all the ‘keywords’ of the original dataset
are used (‘keyword’ can be ‘short’ or ‘crack’ etc.). After pre-
processing, there are 12,032 observations, we only analyze
‘Global success’ = ‘successful’ to avoid the noise. After clus-
tering by GMM into the latent space in FDS (xn), 88 clusters
are obtained as shown in Fig. 5. Using the same method, 26
clusters are obtained after clustering by GMM into the latent
space in FRCS (yn), as shown in Fig. 6. To evaluate cluster-
ing performance, six representative samples are selected in
each group: one in the center, one at the outermost edge, and
the remaining four samples are equidistant from the center to
the edge. This is referred to as centroid analysis in the next
section.

Centroid analysis

To simplify the analysis, we select only the data where the
keyword is ‘short’. For each cluster, six observations are
selected: from the center to the edge, and the four samples
between the center and the edge. The 6 observations from
cluster 9 (99 observations in total) in the latent space of FDS
(xn) are presented in Table 3 (we list only the four features:
Reference; Subject; Context; Source of failure/request):

These 6 observations are similar, the Reference have a
similar format, and all mention Customer Complaint in the
Source of failure/request. The same checks are performed
for other clusters in FDS. We also check the 6 observations
from cluster 4 in Table 4 (111 observations in total when the
keyword=‘short’) in the latent space of FRCS (yn) (we list
only the Pt failure/Elt by sample, Macro failure mode by
sample, Elementary failure mode, Tech cause/Defect by
sample, and Analysis conclusion here because we are only
analyzing the Global success = ‘successful’):

These 6 observations are similar, they all mention
BEoL_Metal for the Pt failure/Elt by sample. And 5 obser-
vations (out of 6) talked about Continuity failure for the
Macro failure mode by sample. Moreover, 4 observations
(out of 6) mentioned EOS in the Analysis conclusion. The
same verification is performed for the other clusters in FRCS.
The clustering by GMM on the latent space obtained by
GCAVE-II (MAH) is good enough to distinguish different
groups in FDS (xn) and in FRCS (yn).

In the next step, we will apply AR to find the potential
relationships between these 88 clusters in the latent space of
FDS (xn) and the 26 clusters in the latent space of FRCS
(yn).

Find the relationships between different clusters in
the latent space of FDS and FRCS

As described in “Description of the method”, AR aim to find
the rules that determine the potential association between ele-
ments in a given transaction with a variety of elements. Each
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Fig. 5 Clustering in latent space with two dimensions of FDS (xn), the optimal number of clusters is determined by BIC, 88 clusters are obtained
in FDS for all keywords

Fig. 6 Clustering in latent space with two dimensions of FRCS (yn), the optimal number of clusters is determined by BIC, 26 clusters are obtained
in FRCS for all keywords

observation has a label X_i in FDS (xn) and simultaneously
a label Y_ j in FRCS (yn). The goal is to propose a possible
fault root cause conclusion (yn) based on the fault description
(xn) by establishing a link between each label in FDS (X_i)
and each label in FRCS (Y_ j).Themethod consists of fixing
the label in FDS (X_i) and then computing the three metrics:
the Support(X_i ⇒ Y_ j), the Con f (X_i ⇒ Y_ j) and the

Li f t(X_i ⇒ Y_ j) for the 88 clusters in FRCS. First, only
the clusters in FRCS Y_ j whose Li f t(X_i ⇒ Y_ j) greater
than 1 are reserved. Then, the top 5 labels (Y_ j) in FRCS
are selected considering these three metrics.

For example, we set a cluster in FDS when i = 6 (X_6),
which is the largest inFDS (1699observations), then the three
metrics are computed and ordered in Table 5 (we only list the
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Table 3 Six observations from cluster 9 in the latent space of FDS (xn) where the keyword is ‘short’

Observations Reference Subject Context Source of failure/request

X1 F1938137570-PA2 Delphi_APTIV_UAR2-TR
_GUAR2CEP_F1938137570
_YL-19-098-PA2

The customer stated: Pin45
short to Pin48 resistance
52ohm

Customer Complaint

X2 F2004143069-PA1 ECC F2004143069 Failure customer
description: short between
A1 and A2.
BTA10-600C-Trace code:
GK827033

Customer Complaint

X3 F2002142423-PA2 Arrow_iRobot
_STM32F303VET6
_F446XXXY
_F2002142423
_QI-2019-24699

The customer stated:
Abnormal: Pin73 GND
short

Customer Complaint

X4 F1922133226-PA2 Kimball
_SPC564A80L7CFAR
_FA80CA_F1922133226
_60062476

Pin125/Pin138 short to
Pin43 (5 ohm)

Customer Complaint

X5 F1938137570-PA2 Delphi_APTIV_UAR2-TR
_GUAR2CEP
_F1938137570
_YL-19-098-PA2

The customer stated: Pin45
short to Pin48 resistance
52ohm

Customer Complaint

X6 F1938137570-PA2 Delphi_APTIV_UAR2-TR
_GUAR2CEP
_F1938137570
_YL-19-098-PA2

The customer stated: Pin45
short to Pin48 resistance
52ohm

Customer Complaint

Table 4 Six observations from cluster 4 in the latent space of FRCS (yn) where Global success equals to ‘successful’

Observations Pt failure/Elt by
sample

Macro failure
mode by sample

Elementary fail-
ure mode

Tech cause/defect
by sample

Analysis conclu-
sion

Y1 BEoL_Metal Continuity failure Short Melting in I/Os EOS damage to power and
output transistors

Y2 BEoL_Metal Continuity failure Resistive Burnt Physical-EOS damage

Y3 BEoL_Metal Continuity failure Resistive Melting in I/Os EOS

Y4 BEoL_Metal Continuity failure Short Burnt X-ray, excess solder,
delamination at mold to
die interface, continuity
tests found shorted pins
on each unit, packages
decapped, visual
inspection found burnt
area in each die

Y5 BEoL_Metal Continuity failure Short Melting in I/Os EOS damage to power and
output transistors

Y6 BEoL_Metal Parametric failure Short Squash Squash caused metal to
short to nearby metal

labels whose metrics are not zero). According to Table 5, we
select only the clusters Y_0, Y_22, Y_16 and Y_13 to pro-
pose the fault root cause conclusion of the analysis when
a new observation is assigned to the cluster of X_6. We
do not consider Y_20 because the Li f t(X_6 ⇒ Y_20) =
0.2951 < 1 does not indicate any correlations between the
X_6 cluster in FDS and the Y_20 cluster in FRCS. We can

draw these four clusters in FRCS according to the three met-
rics as shown in Fig. 7.

To evaluate the performance of ourmethod,we check each
observation when the label in FDS is equal to 6 (X_6). There
are 1699 observations. We check the ratio in which our pro-
posal (4 labels in FRCS Y_0, Y_13, Y_16, Y_22) is correct
for the label in FDS X_6 against the set of observations.
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Table 5 Three metrics
Support(X_6 ⇒ Y_ j),
Con f (X_6 ⇒ Y_ j) and
Li f t(X_6 ⇒ Y_ j) for 5 labels
whose values are not zero in
FRCS when i = 6

X_6 Support(X_6 ⇒ Y_ j) Con f (X_6 ⇒ Y_ j) Li f t(X_6 ⇒ Y_ j)

Y_0 0.059 0.417 1.530

Y_13 0.0004 0.0029 2.3606

Y_16 0.0006 0.0041 1.9066

Y_20 8.3e−5 0.0006 0.2951

Y_22 0.0813 0.5756 1.6266

Fig. 7 Four clusters suggested in FRCS when FDS label is set as X_6

Table 6 The correct ratio if the label of FRCS is the same as what we
predicted for the same ID observation if X_6

With the same ID Y_0 Y_13 Y_16 Y_22

If X_6 41.7% 0.29% 0.4% 57.5%

Table 7 Three metrics Support(X_3 ⇒ Y_ j), Con f (X_3 ⇒ Y_ j)
and Li f t(X_3 ⇒ Y_ j) for 6 labels whose values are not zero in FRCS
when i = 3

X_3 Support(X_3 ⇒ Y_ j) Con f (X_3 ⇒
Y_ j)

Li f t(X_3 ⇒
Y_ j)

Y_0 0.044 0.417 1.532

Y_1 0.0005 0.0047 0.0536

Y_6 8.3e-5 0.0008 0.2369

Y_8 8.3e-5 0.0008 0.4119

Y_19 8.3e-5 0.0008 0.7895

Y_22 0.0607 0.5756 1.6265

Table 6 shows if the label of FDS is X_6, the true label of
the same observation in FRCS is within the predicted labels.
Taking the sum of all these ratios, we get 99.99% as the cor-
rect ratio if the true label of FRCS is within our 4 clusters
computed by AR.

Then we fix the label X_3 which is the second most fre-
quent (1270 observations) in FDS, and the correct ratio is
also calculated if the true label of FRCS is within our 2 pro-
posed clusters (Y_0 and Y_22 in this case), which is 99.29%.
We can see the table of individual metrics computed for each
label in FRCS when i = 3 (X_3) in Table 7.

Table 8 Three metrics Support(X_87 ⇒ Y_ j), Con f (X_87 ⇒
Y_ j) and Li f t(X_87 ⇒ Y_ j) for 2 labels whose values are not zero
in FRCS when i = 87

X_87 Support(X_87 ⇒ Y_ j) Con f (X_87 ⇒
Y_ j)

Li f t(X_87 ⇒
Y_ j)

Y_0 0.0003 0.5 1.835

Y_22 0.0003 0.5 1.4129

Table 9 Three metrics Support(X_64 ⇒ Y_ j), Con f (X_64 ⇒
Y_ j) and Li f t(X_64 ⇒ Y_ j) for 2 labels whose values are not zero
in output space when i = 64

X_64 Support(X_64 ⇒ Y_ j) Con f (X_64 ⇒
Y_ j)

Li f t(X_64 ⇒
Y_ j)

Y_0 0.0003 0.4444 1.6313

Y_22 0.0004 0.5556 1.5699

We also fix the label X_87 that has the smallest number
(8 observations) in FDS and compute the correct ratio if the
true label of FRCS is within the 2 clusters we proposed (Y_0
and Y_22 in this case), which is 100%. We can see the table
of individual metrics computed for each label in FRCS when
i = 87 (X_87) in Table 8.

We also fix the label X_64 that has the second lowest
number (9 observations) in FDS, and compute the correct
ratio if the true label of FRCS is within the 2 clusters we
proposed (Y_0 and Y_22 in this case) which is 100%. We
can see the table of individual metrics computed for each
label in FRCS when i = 64 (X_64) in Table 9. According
to the ratio of these 4 clusters in FDS (X_6, X_3, X_87,
X_64), we get a correct ratio of more than 99%, which is
satisfactory.

In the end, if the label of FRCS is within the array we pre-
dicted for the same ID of observation for each label in FDS,
the correct ratio is computed according to the business rules
proposed in “Description of the method”. The correct ratio
and the number of observations for each cluster in FDS are
shown in Table 10 (from X_0 to X_29), Table 11 (from X_30
to X_59) and Table 12 (from X_60 to X_87). The mean of the
correct ratio for all the labels in FDS (xn) can then be calcu-
lated as 97.8%, which is satisfactory to help industry experts
predict the Fault Analysis (FA) conclusion. For example, the
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Table 10 The correct ratio
when the label of FRCS is inside
the field we have proposed for
the same ID of observation for
each label in FDS: from X_0 to
X_29

Labels in input space Correct ratio (%) Number of observations

X_0 100 36

X_1 100 134

X_2 93.2 118

X_3 99.3 1270

X_4 93.9 738

X_5 96.8 536

X_6 99.9 1699

X_7 94.8 270

X_8 97.4 115

X_9 92.2 892

X_10 94.8 136

X_11 100 102

X_12 96.0 25

X_13 93.1 58

X_14 95.7 93

X_15 100 697

X_16 100 271

X_17 97.1 139

X_18 97.4 154

X_19 98.3 60

X_20 100 41

X_21 100 350

X_22 96.7 30

X_23 94.3 282

X_24 98.8 81

X_25 95.1 164

X_26 98.9 94

X_27 96.3 108

X_28 95.8 96

X_29 98.9 281

Table 11 The correct ratio
when the label of FRCS is inside
the field we have proposed for
the same ID of observation for
each label in FDS: from X_30 to
X_59

Labels in input space Correct ratio (%) Number of observations

X_30 97.3 73

X_31 92.9 156

X_32 95.3 107

X_33 100 87

X_34 100 87

X_35 96.7 61

X_36 100 42

X_37 97.4 39

X_38 95.4 151

X_39 97.5 80

X_40 100 12

X_41 100 19

X_42 100 22
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Table 11 continued Labels in input space Correct ratio (%) Number of observations

X_43 98.5 67

X_44 98.7 76

X_45 100 45

X_46 100 15

X_47 100 62

X_48 95.6 184

X_49 100 49

X_50 100 11

X_51 100 17

X_52 100 19

X_53 98.8 87

X_54 94.5 55

X_55 92.6 54

X_56 100 11

X_57 90 20

X_58 97.3 111

X_59 100 25

Table 12 The correct ratio
when the label of FRCS is inside
the field we have proposed for
the same ID of observation for
each label in FDS: from X_60 to
X_87

Labels in input space Correct ratio (%) Number of observations

X_60 100 31

X_61 97.0 135

X_62 100 16

X_63 100 28

X_64 100 9

X_65 100 70

X_66 92.6 163

X_67 100 30

X_68 100 13

X_69 100 23

X_70 100 23

X_71 100 23

X_72 100 14

X_73 100 13

X_74 96.9 66

X_75 100 28

X_76 100 39

X_77 100 21

X_78 100 46

X_79 92.9 57

X_80 100 18

X_81 91.3 81

X_82 100 16

X_83 100 20

X_84 97.2 36

X_85 90.5 21

X_86 97.1 70

X_87 100 8
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Context is about ‘PinXX short to PinXX’ while the Source
of failure/request is always ‘Customer Complaint’ when
the label in the latent space of FDS (xn) is 9 (cluster X_9)
as mentioned in Table 3. According to our intelligent Fault
Analysis system, we propose that the fault root cause could
be Electrical Over-Stress (EOS) damage.

Conclusions and perspectives

In this paper, a complete AI-based knowledge extraction
pipeline for Fault Analysis in semiconductor industry is pro-
posed following a data-driven approach. Using advanced
NLP and Machine Learning (ML) techniques, text data from
expert analysis reports are processed and the most relevant
information is extracted into latent spaces and clustered by
Gaussian Mixture Model (GMM). Then, Association Rules
(AR) are established to find the relationship between the clus-
tered latent space of fault description and the fault root cause.
The proposed AR also contribute to better interpretability of
AI. The complete architecture can automatically predict the
fault root cause based on the fault description, which can sig-
nificantly improve the efficiency of FA while reducing the
potential cost of inspection exploration actions. The overall
algorithm is evaluatedwith real industry data over three years
and the mean correctness of the predicted label is 97.8%.

The main limitation of the proposed method is that the
model can only predict the fault root causes existing in
the current training database. That means if new failures
or failures related to multiple root causes occur, the model
would still predict one previously existing cause label. This
limitation can be handled on the one hand by training a rein-
forcement learning model, which is able to learn new fault
descriptions and the root cause in a continuous way. On the
other hand, training a Natural Language Generative model
to generate root cause description instead of a classification
model can potentially cover the failure root causes related
to multiple classes. These two approaches are the future
research work which can improve the robustness of the pro-
posed algorithm. Moreover, because the proposed algorithm
depends strongly on the quality of the clustering y GMM, for
future work, it would be also interesting to combine some
(not all) features of the Analysis Path Space to enhance the
clustering performances.
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Appendix A: List of abbreviation

Abbreviation Definition

ADC Automatic defect classification
AI Artificial intelligence
ANN Artificial neural network
APS Analysis paths space
AR Association rules
BIC Bayesian information criterion
CNNs Convolutional neural networks
DLHRR Deep-learning for high-resolution reconstruction
EOS Electrical over-stress
ESD ElectroStatic discharge
FA Fault analysis
FATs Fault analysis triplets
FDS Fault description space
FM Failure mechanism
FP-Growth Frequent pattern growth
FRACAS Fault reporting, analysis, and corrective action system
FRCS Fault root cause space
GCVAE Generalized-controllable variational AutoEncoder
GMM Gaussian mixture model
LM Language models
LSI Large-scale integration
MMD Maximum-means discrepancy
MAH MaHalanobis distance
NLP Nature language processing
PCA Principal component analysis
RCA Root cause analysis
SVC Support vector classifier
VAE Variational AutoEncoder
XRM X-ray microscopy
3DCNN Three-dimensional convolutional neural network
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